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SECTION 1 

INTRODUCTION 

Over the 22 years since the first publication (Ref. 1) of the 

“theory of High-Altitude Electromagnetic Pulse (HEMP), there have been 

several doubters of the correctness of that theory. On one occasion it 

was briefly claimed that the HEMP is a much larger pulse than our theory 

indicates, and is a longitudinal wave rather than transverse. This claim 

was easily shown to rest on an incorrect application of a standard formula 

for the fields of a charge moving at relativistic speed. More commonly, 

it has been claimed that the HEMP is a much smaller pulse than our theory 

indicates and it has been implied, though not directly stated in writing, 

that. the HEMP has been exaggerated by those who work on it in order to 

perpetuate their own employment. It could be noted that, in some quar- 

ters, the disparagement of HEMP has itself become an occupation. While we 

have found that no amount of technical reasoning suffices to quiet such 

criticism, we have learned to live with it, and even to regard it as 

possibly having some beneficial effects, for example in bringing the 

question of the HEMP threat to electrical and electronic systems to the 

attenuation of a wider circle of individuals who have responsibility for 

those systems. 

Thus our principal concern is to convince individuals, with 

technical backgrounds and open minds, who for various reasons have not 

been convinced by previously published papers on HEMP theory, that the 

theory and calculated results are at least approximately correct. One 

possible difficulty with previous papers (Refs. 1, 2, 3) is that they are 

based on solving Maxwell's equations. While that is the most legitimate 
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approach for the mathematically inclined reader, many of the individuals 

we think it important to reach may not feel comfortable with that ap- 

proach. We admit to being surprised at the number of people who have 

wanted to understand HEMP in terms of the fields radiated by individual 

Compton recoil] electrons. Apparently our schools do a better job in 

teaching the applications of Maxwell's equations (in this case, the cyclo- 

tron radiation) than they do in imparting a basic understanding of those 

equations and how they work. However, the generation of the HEMP can be 

understood quite well on the basis of concepts familiar to al] electrical 

engineers and physicists. A derivation of the outgoing wave equation 

based on these concepts is presented in Section 2. This equation, though 

extremely simple, gives the HEMP to an accuracy of a few percent in 

practical cases. We also show that adding the fields radiated by 

individual electrons gives exactly the same answer in a simple but 

relevant example. 

The confidence we have in our calculations of the HEMP rests on 

two circumstances. The first of these is the basic simplicity of the 

theory. The physical processes involved, e.g., Compton scattering, are 

quite well known, and the physical parameters needed in the calculations, 

such as electron mobility, have been measured in relevant laboratory 

experiments. There ts no mathematical difficulty in determining the 

solution of the outgoing wave equation, or in understanding why it is an 

accurate approximation. Nevertheless, to acquire a sufficient understand- 

ing of HEMP to be able to say, of one's own knowledge, that our answers 

are right to 10 or 20% (or wrong) is not a trivial exercise. While the 

concepts we start with are familiar, in applying them we shall soon come 

into new ground for many readers. One will not find our problem worked 

out in textbooks. For example, the model of cyclotron radiation from 

individual Compton recoil electrons is very difficult to apply with 

accuracy to our problem because of the multitudinous secondary electrons, 

which absorb the radiation emitted by the Compton electrons. - Readers who 



have the patience to follow the development in Section 2 will see that the 

outgoing wave theory provides a way to avoid unnecessary complications and 

reduces the problem to its barest essentials. 

The other circumstance is that there is experimental data on the 

HEMP obtained by the Los Alamos Scientific Laboratory in the nuclear test 

series carried out in 1962. In a classified companion report (Ref. 4) we 
present calculations of the HEMP from the Kingfish and Bluegill. events and | 

' compare them with the experimental data, These calculations were perform-_ 

ed some years ago, but have not been widely circulated. In order to make 

the calculations transparently honest, the gamma-ray Output was provided 

‘by Los Alamos, the HEMP calculations were performed by MRC and the compar- 

ison with the experimental data was made by RDA. The degree of agreement 
between calculation and experiment gives important verification of the 

correctness of HEMP theory. 

A feature of HEMP theory that has troubled some people is that 

it determines the radiated fields by integrating along the single ray from. 

nuclear burst to observer. The angular derivatives in Maxwell's equations 

are dropped, which amounts to neglecting diffraction in the propagation of 

the HEMP. The first paper on HEMP (Ref. 1) contained a justification of 

this neglection, based on the large ratio of the transverse dimension of 

the radiating volume compared with the wavelengths in the HEMP. However, 

we have always wondered just how large a correction diffraction would make 

for Kingfish, a fairly severe geometry. In Section 3, a method for calcu- 

lating the effect of diffraction is developed. The method is applied in 

Reference 4 to that event and the effect is found to be less than 1%. 

This calculation starts from Maxwell's equations, but we hope that many 
readers will follow the not-very-complicated mathematics. 



SECTION 2 

THEORY OF THE GENERATION OF HEMP 

2.1 GAMMA RAYS AND COMPTON SCATTERING 

Nuclear bombs emit a small fraction, of the order of 0.003, of 

their energy in gamma rays. Thus a 1-megaton bomb, which produces total 
- energy of about 4.2x101° J (Joules) may emit 3 kilotons or about 
1.2x10'° 3 in gamma rays. Gamma rays are electromagnetic waves, like 
radio waves or visible light, but of much higher frequency than either of 

these--in the range of 102° to 107! Hz. They travel at the speed of Tight 
(c = 3x10° m/sec), and so have wavelengths of the order of 107! cm. This 

is smaller than the diameter of atoms (~10-® cm), and in interacting 
with atoms, gamma. rays act more like particles than waves. As a particle, 

or quantum of electromagnetic radiation, a gamma ray has an energy of the 

order 

E = 2 MeV» 3.2x10°18 go (1) 

(The MeV unit of energy is a convenient one in nuclear physics: it is 

equal to the energy gained by an electron in falling through a potential 
drop of 10° Vv.) Thus the total number of gammas emitted by a1 megaton 
bomb may be of the order 

N 4x1025 gammas oo (2) 



The principal interaction of gamma rays with air atoms, or other 
matter, is Compton scattering. In this process, the gamma collides with 
an electron in the air atom and knocks it out of the atom. In so doing, 
the gamma transfers part of its energy (on the average about half) to the 
electron, and is scattered into a new direction. The Compton recoil 
electron goes generally near the forward direction of the original gamma, 
never in backward directions. Thus a directed flux of gammas produces a 
directed electric current of Compton recoil electrons. This current — 
produces the EMP, 

The mean free path for Compton scattering in sea-level air is of 
the order | 

A= 180m (at sea level) . | | (3) 

At higher altitudes, where the air density is smaller, o is correspond. . 
ingly longer. Since the total mass of air in the atmosphere is about 
1000 gm/cm*, and since the mean free path can also be expressed as 

A = 22 gm/cm* (at any altitude) , : (4) 

the total number of mean free paths in the atmosphere for gammas coming 
vertically downwards is 

N, = 1000/22 ~ 45. (5) 

Only a very small fraction, exp(-N ,) oe 10-29, of the gammas reach the 
ground without being scattered, Host of the gammas will suffer their 
first scattering near the altitude where they have traversed one mean free 
path. This is the altitude above which there are 22 gm/cm? of air and is 
about 



Zz. = 30 kms, 
(6) 

Because the air density Pp falls approximately exponentially with altitude 
Z, | 

P, *-P, exp(-z/h) , (7) 

where the scale height h 1s 

h = 6.7 km at 30 km altitude 5 (8) 

the local mean free path at this altitude is approximately equal to h. 
Thus most of the gammas make their first scattering in a layer of air of 
thickness h centered about Z. This is the source region of the HEMP. 
Scattered gammas make. little # "Further contribution to the HEMP, for reasons 
to-be explained-below. 

We can now calculate the density of Compton electrons in the 
source region. Let us put our nominal] 1-megaton bomb at an altitude of 
100 km, 70 km above the source region. Then the number of gammas incident 
on the source region per unit area, assuming they are emitted isotropi- 
cally by the bomb, jis 

Ns = N /4nr? = 6.5x101" gammas/m7 (9) 

Since every gamma-will make a Compton electron, the number of first- 
scatter Compton electrons per unit area is also Nas On the assumption 
that the gammas are scattered in a height h, the number of birth places of 
first-scatter Compton electrons per unit volume is 

Noo = Na/h = 1.0x10'! b.p.'s/m3? | (10) 



The density of Compton electrons would be the same as this number if they ° 

did not move. Because they move in the same direction as the gammas with 

an average speed of about 0.9 c, their actual density is about 10 times 

this number shortly after birth, or about 1017/m°. (This point is 

explained in Section 2.2 below. } 

An important question is whether the density of Compton elec- 

trons is large enough to justify regarding the current they make as a 

continuous function. The answer to this question depends on the wave- 

length of electromagnetic fields that they produce and that are of inter- 

est. The duration of the HEMP (or that part of it that is of interest to 

us) is at least 107° second, so that wavelengths are a few meters. If we 

wish to resolve the Compton current on the scale of one quarter of a 
wavelength, or about 1 meter, we need to consider the number of Compton 

electrons in a volume of 1m’, This is about 10!* electrons. The average 

fluctuation in this number is about 7101? = 10°, or 1 part in 10°. Thus 
~it seems clear that, for the wavelengths of interest, the Compton current 

density can be quite accurately treated as a continuous function. The 

coherence of the radiated fields is discussed further in Section 2.3 

below. 

Note that if the Compton electrons all moved together at nearly 

the speed of light, they would make a current density 

J. = 48 A/m= , - (12) 

a substantial.current density. | 
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2.2 _ THE MOTION OF COMPTON RECOIL ELECTRONS 

For 2-MeV ganmas, the Compton recoil electrons have an average 
kinetic energy of about 1 MeV. The most energetic electrons move in the 

forward direction of the original gamma with kinetic energy 1.78 MeV. The 
angular distribution of the electrons (per unit solid angle} peaks in the 

forward direction, and has half of its peak value at about 10° off 
forward. Thus the Compton electrons are concentrated near the forward 

direction. 

The velocity v of a 1-MeV electron is such that 

< B= 0.94 , (12) 

and the mass is about 3 times its rest mass. In the geomagnetic field 

appropriate for the central U.S., . 
t 

By) = 0.56 Gauss, | (13) 

the gyro (or Larmor) radius. of such an electron is 

L= 85m . : (14) 

The mean stopping range of the 1-MeV electron, due to collisions with 

electrons in air atoms, at 30 km altitude, is 

R = 170m | (15) 

This range has been reduced from the extreme range (R, = 245 m) to account 
for the multiple scattering of the electron by the nuclei of air atoms. 

The energy lost by the 1-MeV electron in stopping produces about 30,000 
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secondary electrons distributed along its path. The secondary electrons 

have kinetic energies of the order 10 eV at birth. Because their veloci- 

ties are randomly distributed, they make no significant current of their 

own accord. However, if an electric field is present, they drift in the 

direction of the electric force on them, forming an electric conductivity 

in the air. The conductivity is discussed further in Section 2.4. 

Because the mean range of the Compton electron is only about 

twice its gyro radius, it turns through only about 2 radians or 115° in 

the geomagnetic field before stopping. Because its mass and gyro radius 

decrease as it loses energy, it actually turns through a larger angle than 

this. The average trajectory of the Compton electrons at 30 km altitude 

will look like that sketched in figure 1. 

_—— Original Gamma 

Birth Place of 
Compton Electron Initial Gyro Radius 

Stopping Point 

Compton Electron 

Figure 1. Sketch of average trajectory of Compton electrons from 2-MeV 
gamnas at 30 kn altitude. 

We can now understand the difference between the density of 

birth places of Compton electrons and the density of moving Compton 

electrons, tet us have an impulse function of gammas moving through air. 

The trajectory of this gamma pulse, i.e., its position r as a function of 

10 



' Gamma Trajectory 
Stope = 1 

2 

T 

r 

; 7 : - A mx (1-8) 

Lo. | Electron Trajectory, 
1 Slope = B. 

ct 

Figure 2. Explanation of motion compression of Compton electrons. 

ct (t is time) is indicated in figure 2. Consider also two Compton 

electrons with birthp] aces lm apart in r. The trajectories of these 

electrons, which start with velocity v./¢ = BL slightly less than unity, 

are identical except that trajectory 2 is translated parallel to the gamma 

trajectory with respect to that of trajectory 1. The curvature. of the 

electron trajectories is exaggerated in the figure. As indicated in the 

figure, at the time when the second electron is born, the first electron 

is a distance 1 m x (1-6,) away from the second. Since allt electrons born 

between 1 and 2 will be in this reduced interval, the relation between the 

density Nee of Compton electrons and the density Nop of birthplaces is 

11 



N /(1-8,) . (16) ce Nip 

It is not difficult to show that this same relation holds as B,. decreases 

due to geomagnetic deflection, energy loss and scattering. The factor 

1/(1-8,.) must, of course, be averaged over the angular distribution of the 

Compton electrons. For 2-MeV gammas, this average is 

av : } = 11.2 (17) 
1-8, 

just after birth of the Compton electrons (Ref. 5). This justifies the 

factor of 10 used in Section 2.1. In calculations of the HEMP using the 

continuum Compton current, the expression for this current density is 

> 
> . 

= .N. @¢ B J. Nin ee am ; (18) 

where -e is the electron charge. (It is actually the average of B./(1-8,.) 

that has the value given in equation (17), but 8. is only slightly less 

than unity.) | 

2.3 FIELDS RADIATED BY MOVING ELECTRONS 

We have seen that the Compton current density averaged over vol- 

umes of the order of 1 m® has only very small fluctuations in our nominal 

HEMP problem, This averaged current density is commonly called the 

macroscopic current density, and is the quantity used in almost all of the 

applications of electrical engineering, e.g., analysis of radio broadcast- 

ing and receiving, electric power generation and transmission, etc. Engi- 

neers (and physicists) never try to analyze these problems in terms of. 

12 



=e 

the fields radiated by individual electrons, but have nevertheless been 

getting correct answers for over 100 years {in fact, since before elec- 

trons were discovered). We therefore regard it as curious that quite a 

few people have insisted that the HEMP must be derived from the radiation 

of individual electrons in order to obtain reliable results. This seems 

all the more curious when one recalls that the fields of moving and 

accelerating electrons are derived in the textbooks by solving Maxwell's 

(continuum) equations for point charges and currents. Because those 

equations are linear, it must be true that the average or macroscopic 
fields are obtained by solving Maxwell's equations with the macroscopic 

currents. | 

The reason for the common use of the macroscopic current is that 

it is generally much easier to add up the currents of a large number of 

electrons than to add up their fields. However, with sufficient care the 

latter can be done correctly, as the following simple. but relevant exam- 

ples will show. In this section the essential physics of the examples is 

described, while the supporting mathematics is worked out in Appendix A. 

Example 1. Impulse of Gammas on Thin Sheet 

Let us have a planar, impulse function of gammas propagating 

through vacuum and arriving broadside on a thin insulating sheet, as indi- 

cated in figure 3. We imagine that electrons are knocked out of the sheet 

in the forward direction of the gammas, and that there is a magnetic field 

Bg parallel to the sheet, in the y-direction. This field deflects the 

electrons in semicircles, until they restrike the sheet and are stopped. 
_An observer is located at a distance zo below the sheet, which is very 

large compared with the gyro-radius of the electrons, (This is for ease 

of calculation.) 

13 
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Zp Observer 

Figure 3. Configuration for Example 1. 
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The power flow density in the wave is 

P(T,z) = ES (7,2)/Z, watts/m* =, | (60) 

where 

Zo = 1200 »~ 377 ohms . (61) 

With sources and absorbers present, observers at different z may see 

different power densities at the same T. Energy is put into or taken from 

electromagnetic fields by currents flowing against or in the direction of 

the electric field. If J, (T,z) is the current density in Amps/m2, 

then 

J,£, watts/m® (62) 

is the power/m® being taken out of the fields and put into the current 

(electrons). This energy transfer to the electrons must decrease the 

power flow density in the wave. Considering two z's a differentia! dz 

apart, we can write the law of energy conservation as 

Ee , 
a x watts) --oJE (watts) (63) 

az ay n° xX mn . 

The partial derivative here means that T is held constant; energy taken 

out of the wave near time T reduces the power flow density near that time, 

and the notch in the wave so produced’ propagates along with the wave. Now 

carrying out the differentiation of E% gives 

(64) 

28 



Here J, is the total current density. If we have both Compton current 

J... and conduction current oE,, with o the conductivity, then 
XC x? 

a9 ce = -4 (3 +0£.) : (65) 
92 2 

This is the outgoing wave equation in planar geometry, first derived in 

Reference 1. It is called outgoing because the wave propagates in the 

same direction as the gammas. The Compton current, driven by the gammas, 

appears therefore to move with the gammas, so that the variables T,z are 

also convenient for expressing J,.(T,z). 

Application to Example 3 

In Exampte 3 we neglected any conductivity. Putting o = 0 in 

equation (65) and integrating z through the source region gives 

E(T) = - fo (T.z)dz (66) 

The macroscopic Compton current density is 

Nye 77 ON oo fs (67) 

where v, = B,C is the electron velocity component and Nine is the density 

of Compton electrons, which js related to the density Npp of Compton 

electron birthplaces by equation (16). Thus 

Nip (2) 6 (T) ; = 40 E,(T) 5 e ay (68) 

29 



For Example 3, 8, and B, are given by equation (22), ji.e., 

8, = Bcosut , 8B, = Bsinw,t , (69) 

where t is related to T by (equation (A-7)) 

aT = ugt - BSinw,t =, (70) 

Therefore the final expression for EY is 

7 Stnu gt | E.(T) = > esc (f n p42) ——__—_____, (71) 
1-Bcosu,t 

This is identical with equation (50), with equation (53) for Ny. Recal} 
that Na is also equal to the number of gammas per m* incident on the 
atmosphere, 

Probably most readers wil! agree that the calculation of EY here 
is simpler and more reliable than that in Section 2.3 based on adding the 
fields radiated by individual electrons. 

The peak value of E, occurs at coSw,t = 8 and is 

. 29 ec | Na . (72) 

With B = 0.94 (1-MeV electrons) and Na = 6.5x10~'"/m? (equation (9)); this 
becomes 

Ey > 1.6x10’ V/m_, (73) 

30 



The HEMP is actually never this large, the chief reason being the severe 

attenuation due to air conductivity. While the effect of air conductivity 

is easily calculated from the outgoing wave equation, it is very difficult 

to include accurately in the individual electron calculation. 

Spherical Geometry 

The derivation of the outgoing wave equation given above for 

planar geometry is easily modified for spherical geometry. In this case 

the gammas come from a source with dimensions of the order of a meter in a 

time span of the order of 107° second. Thus at later times the gammas 

occupy a spherical shell, centered about the burst point, and with thick- 

ness of a few meters. The Compton current is produced in the part of this 
shell that intersects the atmosphere at altitudes below.50 km or so. It 

is clear that outgoing spherical waves will be generated if the Compton 

current has components transverse to the radius vector from the burst 

point, and the-geomagnetic field ensures ‘that there will be such cur- 

rents, The wavelengths in these waves will be of the order a few meter s 
to tens of meters (to fit into the shell). Because of the large radius of 
the shell, from burst point to source region, variation of the wave with 

transverse distances will be very slow compared with variation with radial 

distance. This means that the waves propagate approximately in the radia] 

direction, since they propagate in the direction of their gradients. 

If observers trigger their scopes on arrival of the gamma pulse, 

then the delayed time T for them in the spherical case is related to stan- 

dard time t by 

Tet-2 , (74) 
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where r ts the distance from the burst point. The transverse wave elec- 

tric field E, will now be a function of T and r. Ina fixed element 69 of 

solid angle, the power flow is 

2 Es (Tr) 
P(T,r) = ———— r76Q watts =, (75) 

0 

If there is a current J, in the direction of E,, then the power flow will 

vary with r according to 

5 CO rea) = srrgbon EE 

or 

aw (rE,)? = ree . | | (76) 

“carrying out the derivative leads to 

~ (rE,) = 2 rd; 

= - 2 r(actoty) (77) 

Here we have expressed the total transverse current as the sum of Compton | 

and conduction parts. This is the outgoing wave equation in spherical 

geometry, and was first derived by Karzas and Latter in Reference 2. 

Comparison of equations (65) and (77) shows that the only 

difference is the replacement of a by rE, in the spherical case and Jy by 

rd; - This replacement coincides with the fact that, in a case without — 

Compton current and conductivity, E, is independent of z in the planar 

case while rE, is independent of r in the spherical case. 

32 



[f the burst point is very far away from the source region, then 

the factor r varies little in the source region, In this case, the planar 

equation (65) can be used in the source region, but we should remeniber 

that the amplititude of the HEMP will fall, after it is produced, inverse- 

ly proportional to the distance from the burst point. - 

Equations (65) and (77) replace the full set of 6 Maxwell 

equations with partial derivatives in 3 space coordinates and time. They 

make it possible to understand the HEMP in quite simple terms, and to find 

approximate analytical solutions. They also make it possible to find nu- 

merical solutions, that are accurate to a few percent, with modest rather 

than prohibitive amounts of computer time. 

Effect of Conductivity; Saturation 

. It is easy to understand the effect of conductivity from either 

--of equations--(65) or (77).- In- the planar case, if there is no Compton 

current, Vic = 0, then EY attenuates with distance according to 

_ 

(Tz) = Exg(T) exp [- = sz]. (78) 

The attenuation length is 2/Zo0, which becomes shorter for larger o. Thus 

two effects oppose each other in equation (65). As the wave moves along 

in z, its amplitude is increased by the Compton current in the direction 

of “Sye- The minus sign here is an example of Lenz's law. At the same 

time, the wave is attenuated by the conductivity. These two opposing 

effects balance if the right-hand side of equation (65) vanishes, i.e., 

aE /az = 0 if 

33 



E. = - d/o °. (79) 

This field, for which the Compton current is cancelled by the conduction 

current, is called the saturated field. The HEMP field approaches this 

value in the source region when the attenuation length becomes small com- 

pared with the thickness of the source region. Note that the saturated 

field is the same in planar and spherical geometry. 

Below the source region, where the gammas have been mostly 

scattered, both Jye and o become small, but the saturated field changes 

only a little. When J,. and co become sufficiently small, the HEMP | 

propagates as a free wave without further buildup or attenuation. The l/r 

dependence is still present, of course. 

The solution of the outgoing wave equation is discussed in detail in Ref- 

erences 5 and 6. 

Diffraction 

In our derivation of the outgoing wave equations, we assumed 

that energy flow was strictly in the z- or r- directions in the planar or 

spherical cases, respectively. In the real, spherical case, this was 

justified by the argument that the transverse variations of the wave are 

small compared with the radial variations. The wave must have transverse 

variations since there are no spherical waves that are independent of the 

angles of spherical coordinates. The wave must be composed of spherical 

harmonics Y9 (in the standard notation) with 221. Generally, however, 

the minimum length scale of the transverse variations is set by the 

34 



atmospheric scale height, equation (8), since the gamma flux and Compton 

current will vary significantly in this distance, For observers that are 

near the horizon from a given burst point, as sketched in figure 5, the 

vertical direction is not far from the 6-direction of spherical coordi- 

nates. In this case, the scale length of wave variations in 6 is indeed 

approximately the scale height h. The scale length for variations in the 

azimuthal direction $ is comparable with the radius of the source region 

from the burst point, which is typically much greater than h; this vari- 

ation comes from the changing angle between the newborn Compton electrons 

and the geomagnetic field. Thus the principal transverse variations are 

those associated with the scale height. 

Observer 

Figure 5. For an observer near the horizon, the 6-direction 
is approximately vertical. 
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